Abstract Algebra: A Dense, Self-contained Lecture

From Groups to Polynomial Rings and Cyclic Codes

Khushraj Madnani (lecture slides)

October 30, 2025

Outline

Introduction & Motivation

Groups

Subgroups, Generators and Powers

Cosets and Lagrange's Theorem

Homomorphisms and Normal Subgroups

Isomorphisms and Automorphisms

Introduction & Motivation

What is Abstract Algebra?

Definition

An *algebraic structure* is a set equipped with one or more operations that satisfy a collection of axioms (closure, associativity, etc.).

- Central theme: study *structure preservation* under operations.
- Running examples: \mathbb{Z}_n (modular addition), symmetry groups of polygons, polynomial rings $\mathbb{F}[x]$.

Notation and Conventions

- Group (G, \cdot) : we write multiplicatively by default; additively when convenient (G, +).
- For an element $g \in G$, g^n denotes repeated product; $\langle g \rangle$ denotes subgroup generated by g.
- Rings are unital unless otherwise stated; 0, 1 denote additive and multiplicative identities.

Course Goals

Dense, self-contained coverage such that:

- Definitions, theorems, and full proofs appear in the slides.
- Non-trivial examples included for each major result.
- Minimal external reference required.

Groups

Definition of a Group

Definition

A group (G, *) is a set G with a binary operation * satisfying:

- 1. (Closure) $\forall a, b \in G$, $a * b \in G$.
- 2. (Associativity) $\forall a, b, c \in G$, (a * b) * c = a * (b * c).
- 3. (Identity) $\exists e \in G$ such that $\forall a \in G$, e * a = a = a * e.
- 4. (Inverse) $\forall a \in G, \exists a^{-1} \in G \text{ with } a*a^{-1} = e = a^{-1}*a.$

Basic Properties: Uniqueness of Identity and Inverse

Theorem

Identity and inverses in a group are unique.

Proof.

If e, e' are identities then e = e * e' = e'. For uniqueness of inverse, if b and c are inverses of a, then b = b * e = b * (a * c) = (b * a) * c = e * c = c.

6

Examples of Groups

Example

 $(\mathbb{Z},+)$ is a group with identity 0 and inverse -n for $n\in\mathbb{Z}$.

Example

 $(\mathbb{Z}_n, \dot{+_n})$: integers mod n under addition. Finite group with n elements.

Example

 S_n , the symmetric group on n letters (all permutations) with composition.

Order of an Element and Lagrange's Motivation

Definition

The *order* of $g \in G$ is the smallest positive integer m such that $g^m = e$, if it exists; otherwise order is infinite.

Note: orders of elements divide group order in finite groups (Lagrange). We'll prove this later.

Cyclic Groups

Definition

A group G is cyclic if $\exists g \in G$ such that $G = \langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}.$

Example

 \mathbb{Z}_n is cyclic generated by 1.

Cayley Tables

Cayley Tables: Visualizing Group Operations

- The **Cayley table** of a finite group $G = \{g_1, g_2, \dots, g_n\}$ lists all products $g_i g_j$ in a table form.
- Each row and column correspond to group elements; the entry at row i, column j is g_ig_j .

Properties:

- The identity element *e* appears once in each row and each column.
- Each row and column is a permutation of the group elements (Latin square property).
- Associativity can be verified indirectly by checking consistency of the table.

Example: Cayley Table of $C_3 = \{e, a, a^2\}$ where $a^3 = e$.

10

Subgroups, Generators and Powers

Subgroup Definition and Tests

Definition

A subset $H \subseteq G$ is a *subgroup* (denoted $H \le G$) if H itself is a group under the operation of G.

Proposition (One-step subgroup test)

A non-empty subset $H \subseteq G$ is a subgroup iff $\forall a, b \in H$, $ab^{-1} \in H$.

Subgroup Definition and Tests

Definition

A subset $H \subseteq G$ is a *subgroup* (denoted $H \le G$) if H itself is a group under the operation of G.

Proposition (One-step subgroup test)

A non-empty subset $H \subseteq G$ is a subgroup iff $\forall a, b \in H$, $ab^{-1} \in H$.

Proof.

If H is a subgroup the condition holds. Conversely, taking b=a gives $aa^{-1}=e\in H$, closure follows from $ab^{-1}\in H$, and inverses follow by choosing suitable a,b.

Generated Subgroups and Intersections

Definition

For $S \subseteq G$, $\langle S \rangle$ is the smallest subgroup containing S, equivalently the intersection of all subgroups of G that contain S.

Proposition

Intersection of any family of subgroups is a subgroup.

Generated Subgroups and Intersections

Definition

For $S \subseteq G$, $\langle S \rangle$ is the smallest subgroup containing S, equivalently the intersection of all subgroups of G that contain S.

Proposition

Intersection of any family of subgroups is a subgroup.

Proof.

Direct verification using the subgroup test; non-emptiness is ensured as all subgroups contain e.

Orders in Cyclic Groups

Theorem

If $G = \langle g \rangle$ is finite cyclic and |G| = n, then $g^k = e \iff n \mid k$. Moreover, the order of g is n and $\langle g^d \rangle$ has order $n/\gcd(n,d)$.

Orders in Cyclic Groups

Theorem

If $G = \langle g \rangle$ is finite cyclic and |G| = n, then $g^k = e \iff n \mid k$. Moreover, the order of g is n and $\langle g^d \rangle$ has order $n/\gcd(n,d)$.

Proof.

Basic number theory: $g^k = e$ implies $n \mid k$ by minimality of n. For subgroup generated by g^d , its order is $n/\gcd(n,d)$ by considering multiples.

Examples: Subgroups of \mathbb{Z}_n

Subgroups correspond to divisors: for each $d \mid n$, $\langle n/d \rangle$ is a subgroup of order d. Hence lattice of subgroups is isomorphic to divisibility lattice of n.

Cosets and Lagrange's Theorem

Cosets

Definition

For $H \leq G$ and $g \in G$, the left coset $gH = \{gh : h \in H\}$. Right coset Hg analogously.

Properties: all left cosets have same cardinality as H, they partition G.

Partitioning by Cosets

If $g_1H \cap g_2H \neq \emptyset$ then $g_1H = g_2H$. Hence left cosets partition G into disjoint equal-sized blocks.

Lagrange's Theorem

Theorem

If G is a finite group and $H \leq G$, then |H| divides |G|. Precisely, |G| = |H|[G:H] where [G:H] is number of left cosets.

Lagrange's Theorem

Theorem

If G is a finite group and $H \leq G$, then |H| divides |G|. Precisely, |G| = |H|[G:H] where [G:H] is number of left cosets.

Proof.

Partition G into [G:H] cosets each of size |H|; count elements.

Consequences of Lagrange

Corollary If G is finite and $a \in G$, then $ord(a) \mid |G|$.

Consequences of Lagrange

Corollary

If G is finite and $a \in G$, then $ord(a) \mid |G|$.

Proof.

 $\langle a \rangle$ is a subgroup whose order equals $\operatorname{ord}(a)$, apply Lagrange.

Example and Exercise

Example: In \mathbb{Z}_{12} , subgroup $\langle 4 \rangle = \{0,4,8\}$ has order 3; there are 4 cosets.

Exercise: Prove that any group of prime order p is cyclic.

Example and Exercise

Example: In \mathbb{Z}_{12} , subgroup $\langle 4 \rangle = \{0,4,8\}$ has order 3; there are 4 cosets.

Exercise: Prove that any group of prime order p is cyclic.

Proof.

Let |G|=p. For any $a\neq e$, ord(a) divides p and is >1, so equals p, thus $G=\langle a\rangle$. \square

Homomorphisms and Normal

Subgroups

Group Homomorphisms

Definition

A map $\varphi: G \to H$ is a homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$.

Kernel $\ker \varphi = \{g \in G : \varphi(g) = e\}$, image $\operatorname{im} \varphi = \varphi(G)$. Intuitive explanation of Kernel to be discussed in class.

Isomorphisms and Automorphisms

Isomorphisms

Definition

An isomorphism $\varphi: G \to H$ is a bijective homomorphism: $\varphi(ab) = \varphi(a)\varphi(b)$.

Isomorphic groups are structurally identical; notation $G\cong H$.

Properties Preserved by Isomorphism

If $\varphi: G \to H$ is isomorphism then:

- |G| = |H| (finite case)
- $\operatorname{ord}(a) = \operatorname{ord}(\varphi(a))$
- Subgroup lattice structure preserved

Automorphism Group

Definition

 $\operatorname{Aut}(G) = \{ \varphi : G \to G \mid \varphi \text{ is an isomorphism} \}$, a group under composition.

Example: $\operatorname{Aut}(\mathbb{Z}_n) \cong (\mathbb{Z}_n)^{\times}$.