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Introduction & Motivation



What is Abstract Algebra?

Definition
An algebraic structure is a set equipped with one or more operations that satisfy a

collection of axioms (closure, associativity, etc.).

• Central theme: study structure preservation under operations.

• Running examples: Zn (modular addition), symmetry groups of polygons,

polynomial rings F[x ].
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Notation and Conventions

• Group (G , ·): we write multiplicatively by default; additively when convenient

(G ,+).

• For an element g ∈ G , gn denotes repeated product; ⟨g⟩ denotes subgroup
generated by g .

• Rings are unital unless otherwise stated; 0, 1 denote additive and multiplicative

identities.
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Course Goals

Dense, self-contained coverage such that:

• Definitions, theorems, and full proofs appear in the slides.

• Non-trivial examples included for each major result.

• Minimal external reference required.
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Groups



Definition of a Group

Definition
A group (G , ∗) is a set G with a binary operation ∗ satisfying:

1. (Closure) ∀a, b ∈ G , a ∗ b ∈ G .

2. (Associativity) ∀a, b, c ∈ G , (a ∗ b) ∗ c = a ∗ (b ∗ c).
3. (Identity) ∃e ∈ G such that ∀a ∈ G , e ∗ a = a = a ∗ e.
4. (Inverse) ∀a ∈ G , ∃a−1 ∈ G with a ∗ a−1 = e = a−1 ∗ a.
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Basic Properties: Uniqueness of Identity and Inverse

Theorem
Identity and inverses in a group are unique.

Proof.
If e, e ′ are identities then e = e ∗ e ′ = e ′. For uniqueness of inverse, if b and c are

inverses of a, then b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.
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Examples of Groups

Example
(Z,+) is a group with identity 0 and inverse −n for n ∈ Z.

Example
(Zn,+n): integers mod n under addition. Finite group with n elements.

Example
Sn, the symmetric group on n letters (all permutations) with composition.
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Order of an Element and Lagrange’s Motivation

Definition
The order of g ∈ G is the smallest positive integer m such that gm = e, if it exists;

otherwise order is infinite.

Note: orders of elements divide group order in finite groups (Lagrange). We’ll prove this

later.
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Cyclic Groups

Definition
A group G is cyclic if ∃g ∈ G such that G = ⟨g⟩ = {gn | n ∈ Z}.

Example
Zn is cyclic generated by 1.
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Cayley Tables

Cayley Tables: Visualizing Group Operations

• The Cayley table of a finite group G = {g1, g2, . . . , gn} lists all products gigj in a

table form.

• Each row and column correspond to group elements; the entry at row i , column j is

gigj .

Properties:

• The identity element e appears once in each row and each column.

• Each row and column is a permutation of the group elements (Latin square

property).

• Associativity can be verified indirectly by checking consistency of the table.

Example: Cayley Table of C3 = {e, a, a2} where a3 = e.

∗ e a a2

e e a a2

a a a2 e

a2 a2 e a

Observation: Every row and column contains all elements of C3 exactly once,

confirming closure and inverse properties.
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Subgroups, Generators and Powers



Subgroup Definition and Tests

Definition
A subset H ⊆ G is a subgroup (denoted H ≤ G ) if H itself is a group under the

operation of G .

Proposition (One-step subgroup test)
A non-empty subset H ⊆ G is a subgroup iff ∀a, b ∈ H, ab−1 ∈ H.

Proof.
If H is a subgroup the condition holds. Conversely, taking b = a gives aa−1 = e ∈ H,

closure follows from ab−1 ∈ H, and inverses follow by choosing suitable a, b.
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Generated Subgroups and Intersections

Definition
For S ⊆ G , ⟨S⟩ is the smallest subgroup containing S , equivalently the intersection of

all subgroups of G that contain S .

Proposition
Intersection of any family of subgroups is a subgroup.

Proof.
Direct verification using the subgroup test; non-emptiness is ensured as all subgroups

contain e.
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Orders in Cyclic Groups

Theorem
If G = ⟨g⟩ is finite cyclic and |G | = n, then gk = e ⇐⇒ n | k. Moreover, the order of

g is n and ⟨gd⟩ has order n/ gcd(n, d).

Proof.
Basic number theory: gk = e implies n | k by minimality of n. For subgroup generated

by gd , its order is n/ gcd(n, d) by considering multiples.
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Examples: Subgroups of Zn

Subgroups correspond to divisors: for each d | n, ⟨n/d⟩ is a subgroup of order d . Hence

lattice of subgroups is isomorphic to divisibility lattice of n.

14



Cosets and Lagrange’s Theorem



Cosets

Definition
For H ≤ G and g ∈ G , the left coset gH = {gh : h ∈ H}. Right coset Hg analogously.

Properties: all left cosets have same cardinality as H, they partition G .

15



Partitioning by Cosets

If g1H ∩ g2H ̸= ∅ then g1H = g2H. Hence left cosets partition G into disjoint

equal-sized blocks.
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Lagrange’s Theorem

Theorem
If G is a finite group and H ≤ G, then |H| divides |G |. Precisely, |G | = |H| [G : H]

where [G : H] is number of left cosets.

Proof.
Partition G into [G : H] cosets each of size |H|; count elements.
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Consequences of Lagrange

Corollary
If G is finite and a ∈ G, then ord(a) | |G |.

Proof.
⟨a⟩ is a subgroup whose order equals ord(a), apply Lagrange.
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Example and Exercise

Example: In Z12, subgroup ⟨4⟩ = {0, 4, 8} has order 3; there are 4 cosets.

Exercise: Prove that any group of prime order p is cyclic.

Proof.
Let |G | = p. For any a ≠ e, ord(a) divides p and is > 1, so equals p, thus G = ⟨a⟩.
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Homomorphisms and Normal

Subgroups



Group Homomorphisms

Definition
A map φ : G → H is a homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G .

Kernel kerφ = {g ∈ G : φ(g) = e}, image imφ = φ(G ). Intuitive explanation of

Kernel to be discussed in class.
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Isomorphisms and Automorphisms



Isomorphisms

Definition
An isomorphism φ : G → H is a bijective homomorphism: φ(ab) = φ(a)φ(b).

Isomorphic groups are structurally identical; notation G ∼= H.
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Properties Preserved by Isomorphism

If φ : G → H is isomorphism then:

• |G | = |H| (finite case)

• ord(a) = ord(φ(a))

• Subgroup lattice structure preserved
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Automorphism Group

Definition
Aut(G ) = {φ : G → G | φ is an isomorphism}, a group under composition.

Example: Aut(Zn) ∼= (Zn)
×.
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